

Magnetic Road Markings for All-weather, Smart Roads

SenSys 2023, Nov.14

Jike Wang, Shanmu Wang, Yasha Iravantchi, Mingke Wang, Alanson Sample, Kang G. Shin, Xinbing Wang, Chenghu Zhou, Dongyao Chen

Background and Motivation

Road surface markings are **safety-critical** traffic infrastructure

Adverse weather conditions

Wear and tear

The **poor visibility** of road markings is the major hurdle for driving safety and efficiency

Current Paradigm is Limiting

Reflective road marking

Raised pavement marker

Down-pointing arrow

These markers only convey **limited information** and may still be occluded by adverse conditions

Occlusion-free Solutions

Impinj R420 RFID reader

- Radio frequency identification (RFID)
 - High cost (>\$1,000)
 - Multi-path effect
- Millimeter wave
 - Obstacle occlusion
 - Multi-path effect
- Near-field communication (NFC)
 - Short range (<10 cm) and low speed (<1 m/s)
- Magnetic sensing
 - Robust, cost-effective and highly accurate

Millimeter-wave radar

NFC-enabled payment

Magnetic field

Technical Challenges

1. How to encode diverse road information with passive magnets?

- High encoding capacity
- 2. How to achieve robust sensing in harsh on-road scenarios?
 - Varying speed/headings
 - Real-world disturbances
- 3. How to deploy METRO in real-word road environments?
 - High durability
 - Low cost

Our Solution: METRO

• A novel all-weather road marking infrastructure utilizing passive magnets and an automotive-grade magnetic sensing framework

On-road magnetic dots

Sensor array attached in car's bumper

The Overview

Encoding Scheme of METRO

• Two types of road surface markings ^[1]

Longitudinal markings (e.g., lane lines)

Transverse markings (e.g., arrow markings)

[1] Federal Highway Administration. 2022. Manual on uniform traffic control devices. https://mutcd.fhwa.dot.gov/. (2022).

Encoding Longitudinal Markings

- N/S polarity for the upside
 - Solid line: {"N", 90°}
 - Dashed line: {"S", 90°}

Longitudinal markings (e.g., lane lines)

Longitudinal markings encode by METRO

Encoding Transverse Markings

N/S polarity for the forward

Transverse markings (e.g., arrow markings)

Transverse marking encoded with polarity

How to Encode Diverse Transverse Markings?

Introducing: Inter-magnet Distance

- The calculated distance is inaccurate due to the arbitrary driving trajectory
- METRO introduces distance ratio (i.e., ratio of inter-magnet distance)

Transverse marking denoted as {"SNS", 0°, M, L, Seg_d, d_2/d_1 }

Exemplary Transverse Markings

• Given M=3, L=4 m, Seg_d=1 m, METRO can encode **24** unique messages

Encoding Capacity Analysis

Encoding capacity

$$C = 2^{M} \cdot {\binom{L/Seg_d - 1}{M - 2}}$$

 With M = 3, L = 4 m and Seg_d = 0.1 m, METRO can reliably encode 248 unique messages

How to Achieve Robust Magnetic Sensing?

 METRO needs to tackle unique challenges to facilitate the harsh on-road scenarios

High speed (e.g., >50 mph)

Adverse weather

Rough pavements

We propose an **automotive-grade magnetic sensing framework** that constitutes novel hardware and software designs

Hardware Design

- Modular magnetic sensor array
 - A Teensy 4.1 MCU
 - 12 MLX90393 magnetometers
- Hardware cost: < \$85
- The sampling rate: >350 Hz

On a smart electric car

On a Tesla Model Y

Sensing Algorithm

- Derivative-based peak detection algorithm
- Three key steps, total time delay <25 ms
 - Preprocessing, derivation, peak/valley detection

Raw peak signal with "N" polarity

Integrated Noise Cancellation

- Environmental disturbances can be eliminated by the derivative-based sensing pipeline
 - On-road infrastructures
 - Surrounding vehicles

Surrounding vehicles

Integrated Noise Cancellation (Cont.)

- Noises from the ego car
 - Observation: the wheel rotation incurs severe periodic magnetic noise

Integrated Noise Cancellation (Cont.)

• Solution: LMS-based adaptive magnetic field neutralization (AMN)

Adaptive filter with Least Mean Square

Integrated Noise Cancellation (Cont.)

96.7%

Accuracy with AMN

Evaluation: Vehicle Speed

- Speed: 15-55 mph (24-88 km/h)
 - Test tags: tag {"N", 90°} and tag {"NNN", 0°, 3, 4m, 1m, 3/1}
- Results
 - The accuracy of detecting 90° and 0° magnets exceeded **93%** and **90%** at **> 50** mph
 - Overall detecting accuracy over **97%**

Evaluation: Ground Clearance

- Measure four types of real-world vehicles
- Ground clearance: 15-35 cm

Evaluation: Ground Clearance (Cont.)

- Results
 - Even at 30 cm, the performance of 90° and 0° magnets are **93%** and **87%**
 - The overall accuracy exceeded **97%** within the clearance of **30** cm

How to Deploy METRO in Real-world Roads?

Achieve highly durable and cost-effective deployment for

• METRO's sensor array and magnetic tag

Deployability of METRO's Sensor Array

- Protect the sensor array with a PVC shell
- Installed the sensor array under the front bumper of a compact EV for a month
 - A total travel distance of over **150** km

No sensor malfunctions/anomalies to METRO's sensor array

Deployability of METRO's Tag

- High durability
 - Use cubic N52-grade passive magnets
 - With a 3D-printed protective shell
- Low cost
 - Each magnet: **\$1**
 - Line marking: **\$0.17** per meter
 - Traditional line marking: \$0.21-7.70 per meter ^[2]
 - Transverse marking: \$3 per tag

METRO tags in all-weather conditions

Deployability of METRO's Tag (Cont.)

- Deployed the tags on a busy public road for one month
 - An average daily traffic volume exceeding **2,200** vehicles

No damage or demagnetization to METRO's magnetic tags

Manufacture and Deployment of METRO's Tag

1. Print the protective

3. Add adhesive

4. Deploy the tag

Conclusion

- METRO is a novel **all-weather** road marking infrastructure. It leverages magnetic sensing to achieve **accurate**, **robust**, and **cost-efficient** perception of road markings.
- METRO is tested and verified on REAL-WORLD ROADS!

Yes, METRO is Open-source!

https://github.com/wjk5117/METRO

Thanks! Q&A

Research presented by:

Interactive Sensing & Computing Lab