NagX /'mæg 'eks/ Untethered, Mobile Hand Tracking with Passive Magnets

Dongyao Chen, Mingke Wang, Chenxi He, Qing Luo, Yasha Iravantchi, Alanson Sample, Kang G. Shin, Xinbing Wang

Nintendo Power Glove

Oculus

UltraLeap

Google's Hand-tracking Tool

Microsoft's HandPose

Google's Project Soli

Detecting the face touching behavior

• Detecting unhealthy behavior, e.g., face touching, for personal hygiene

	Accuracy	Sensing range	Resilient to NLoS	Privacy preserving	Power Consumption
Vision-based	Low	Large	No	No	Intense
RF-based	High	Directional	No	No	Moderate
IMU-based	Drifting issue	N/A	Yes	Yes	Intense
Magnetic Tracking	Yes	30cm	Yes	Yes	Ultra Low

Introducing MagX

• A fully untethered on-body tracking system utilizing passive magnets and a novel magnetic sensing platform

The Overview

Tracking Passive Magnet on Mobile Platform

The dipole magnetic field model

$$\vec{B} = \frac{\mu_0}{4\pi} \left(\frac{3(\vec{m} \cdot \vec{r})\vec{r}}{|\vec{r}|^5} - \frac{\vec{m}}{|\vec{r}|^3} \right)$$

• The sensor reading can be denoted as the linear combination of each magnet's field and the background magnetic field:

$$\overrightarrow{B_{i}} = G + \sum_{j=1}^{j=M} \frac{\mu_{0}}{4\pi} \left(\frac{3\left(\overrightarrow{m_{j}} \cdot \overrightarrow{r_{ij}}\right) \overrightarrow{r_{ij}}}{\left|\overrightarrow{r_{ij}}\right|^{5}} - \frac{\overrightarrow{m_{j}}}{\left|\overrightarrow{r_{ij}}\right|^{3}} \right)$$

Ground Truth Collection

- Collecting the ground truth is **essential** for evaluating our performance
- Our proposed a LeapMotion-based platform for data collection
 - Can track at an accuracy of within 2.5 mm
 - Cost < **\$200**

Performance Evaluation

(a) Position error of tracking **one** magnet (b) Orientation error of tracking **one** magnet

 MagX can achieve millimeter accuracy within ~25 cm distance (9.8*9.8cm² layout)

System Overhead

For the sensor array

MagX incurs 0.22 W power drain , 8-hour usage on small battery pack (500 mAh)

For the mobile device

Computing Modality	CPU Usage	Average FPS	Power Drain (W)
Raspberry Pi	181.21%	1213.89	0.64
Raspberry Pi Zero (emulated)	23.79%	514.23	0.16

Exemplary Use Cases

AR interaction

Face touching detection

• Face touching detection

• AR interaction

Procedure of Capsule Endoscopy

Endoscopy capsule

Gastrointestinal tract

Internal imagery

Capsule Endoscopy demo

Magnet deployment

6.3 cm pork belly overlay

Adjust the placement

Tracker measurement

YES, MagX is open-source

https://github.com/dychen24/magx

Conclusion

- MagX is an untethered and fully mobile hand tracking system. It uses a novel magnetic sensing scheme to achieve high tracking performance.
- Future directions includes:
 - Addressing hard and soft iron disturbances
 - Redesigning the form factor

Thanks! **Q & A**

Research Presented by:

Interactive Sensing & Computing Lab