

Automatic Calibration of Magnetic Tracking

Mingke Wang^{*}, Qing Luo^{*}, Yasha Iravantchi, Xiaomeng Chen, Alanson Sample, Kang G. Shin, Xiaohua Tian, Xinbing Wang, Dongyao Chen

Recent Progresses in Magnetic Tracking

Magnetometer array

Applied force

Fabricated, passive magnetic skin

https://reskin.dev,

Wait...

Compasses usually require frequent recalibration

Calibration is not a Trivial Task

• These calibration methods are tedious

150

Time (s)

100

50

200

250

300

8-shaped calibration Tilt calibration Six-sided calibration for UAVs 底部朝下 右侧朝" 左侧朝下 Wave the phone in a figure 8 motion to calibrate Calibrate your blue dot's compass at anytime Tilt and move your phone 3 times like this: 顶部朝下 Compass accuracy: medium DONE с 148.6 б W 148.4 148.2

Calibration can also be Time-consuming

An extensive calibration is necessary for calibration performance

Understanding the Disturbance

- Magnetic disturbances
 - Hard-iron effect
 - Soft-iron effect

Can we enable a seamless calibration process that can

Fully calibrate electromagnetic disturbances;
<u>1. Incur minimum user disturbances.</u>

System Overview of MAGIC

Magnetometer readings, sensing result

Soft-iron Calibration

• Know the soft-iron parameters

Soft-iron Calibration(Cont.)

• Know the soft-iron parameters

Soft-iron Calibration (Cont.)

• Know the soft-iron parameters

Solution: Using Electromagnets

Hard-iron Calibration

 $\widehat{B} = B + \beta$ Hard-iron parameter, it is an intrinsic feature with the sensor, it cannot be decoupled from *G* without extensive movement

$$\widehat{B} = B^{signal} + G + \beta$$

Constant feature with the environment

Now we introduce, $B^{call} = G_0 + \beta$

$$\widehat{B} - B^{cali} = B^{signal} + G - G_0$$

Auto-triggering Scheme

- Design goal: automatically determine whether calibration is needed
- The key idea: a two-step approach
 - I. Determine a baseline of the current magnetic status
 - 2. Periodically monitor the magnetic status with a novel feature set

Put Everything Together

Design of the coil and stand

Compact coil

MAGIC's assembly on MagX system

Performance Evaluation

• Hard iron and soft iron calibration

Performance Evaluation

• Auto-triggering scheme

Electronic devices tested in experiments	No disturbance	Smart wristband	Charging case of wireless earbuds	Wireless earbud	Wireless keyboard	Wireless mouse	Bone conduction earphone	Robot arm Sensor array
Need calib.?	NO	YES	YES	NO	NO	NO	YES	NO
Err. (mean, std)	(0.98, 0.04)	(6.52, 0.78)	(6.76, 0.46)	(2.73, 0.11)	(0.98, 0.03)	(1.01, 0.04)	(9.11, 6.88)	(1.11, 0.13)

With MAGIC's baseline setting and status monitoring We can accurately connect the calibration status with system performance, and trigger calibration ONLY when NEEDED

Performance Evaluation

Auto-triggering vs. periodic calibration methods

The Energy Cost of MAGIC

• We compared MAGIC's energy cost with different time intervals'

Interval	Auto-triggering	300 s	150 s	30 s
Energy cost (J)	270.82	270.82	275.24	310.59
Occurrences	3	3	6	30

What can We Achieve with MAGIC?

A workable, wearable, and efficient **essential** for magnetic tracking technology

Hand-writing Experiment

Text Entry in VR is a Nightmare ...

https://www.mdpi.com/2227-7080/7/2/31

3D Handwriting, Made into Reality

3D Handwriting, Made into Reality

Conclusion

- MAGIC is a practical and easy-to-use calibration system for magnetic sensing apps
 - MAGIC handles notorious soft- and hard-iron disturbances
 - MAGIC enables end-to-end automatic calibration by using a lightweight autotriggering scheme

Thanks! **Q & A**

Research Presented by:

Interactive Sensing & Computing Lab